

MOJAVE Collaborators

- A. Bohn, M. Cara, N. Cooper, S. Kuchibhotla, A. Lankey, N. Mellott, (Purdue)
- I. Agudo, T. Arshakian, Y. Kovalev, A. Lobanov, E. Ros, J. A. Zensus (MPIfR)
- M. and H. Aller (Michigan)
- S. Bloom (Hampden-Sydney)
- M. Cohen (Caltech)
- D. Homan (Denison)
- N. Gehrels, M. Kadler, J. McEnery, R. Sambruna, J. Tueller (GSFC)
- K. Kellermann (NRAO)
- J.-A. Pulido (IAC)
- R. Vermeulen (ASTRON)

Outline

- Origins and goals of the MOJAVE program
- 2. Data archive
- 3. MOJAVE in the GLAST era
- 4. Challenges facing large VLBA monitoring surveys

Monitoring

Of

Jets in

Active Galaxies with

VLBA

Experiments

History

- Pre-VLBA era:
 - only a few dozen reliable AGN jet speeds
 - irregular VLBI temporal sampling
- 1994-2002:
 - over 200 AGN imaged regularly with VLBA 2 cm
 Survey
 - all had > 200 mJy of compact flux density
 - primary goal: understand long-term kinematics of AGN outflows

MOJAVE Phase 1 Survey

- 2002: Full polarization imaging added (linear and circular)
- Source list revised to a flux-limited sample of 133 sources:
 - 15 GHz VLBA flux density > 1.5 Jy (> 2 Jy below celestial equator)

high completeness

Lister & Homan 2005, AJ 130,1389

2006: MOJAVE Phase-2

- Sample expanded to 192 jets:
 - 58 EGRET blazars with dec. > -20°
 - 33 low-luminosity AGN (< 10²⁶ W/Hz @ 15 GHz)
 - 11 jets from 2 cm Survey with unusual kinematics
- Single epoch on every source at 8.1, 8.4, 12.1 and 15.3 GHz

MOJAVE Archive: Community Resource

www.physics.purdue.edu/MOJAVE

- Data on brightest radio AGN in northern sky available typically 5 weeks after observation.
 - images, visibility data, movies
 - radio flux densities and spectra
 - kinematics plots (publication in preparation)
- Please consider contributing any published 2 cm
 VLBA AGN data you may have lying around.

MOJAVE: Current Status

- 2007 January 2008 June:
 - one 24hr VLBA 15 GHz run per month
 - 25 sources selected from MOJAVE-2 sample:
 - individual source cadences (every 2 months to 2 years, depending on angular speed)
 - flaring/unusual activity
 - community interest/requests
 - upcoming observing source list at www.physics.purdue.edu/MOJAVE/data.html

2008-2009: Add up to 100 GLAST AGN detections -require > 100 mJy VLBA flux density at 15 GHz and dec > -30°

Challenges for VLBA Blazar Monitoring

- 1. Observing wavelength tradeoffs
- 2. Temporal sampling requirements
- 3. Multi-wavelength coordination

- Want to avoid 'stroboscopic' effects:
 - motion between epochs $< \frac{1}{2}$ component spacing.
 - shorter wavelengths require more frequent sampling

Different jets can require vastly different sampling rates

BLRG 3C 390.3

Maximum speed = 605 ± 10 μarcsec/yr GPS galaxy 2021+614

Maximum speed = 24 ± 4 µarcsec/yr

Multiwavelength Coordination

 Short variability timescales pose serious challenge for studying blazar SEDs

- VLBA scheduling:
 - weather a concern at shorter wavelengths
 - dynamic schedule made 2-3 days in advance
 - high dynamic queue priority essential
 - ideally need time 'window' on other facilities
- MOJAVE:
 - 2-3 Swift targets within 48 hrs of VLBA run
 - UMRAO observations of all sources within 48 hrs

Summary

- The VLBA has enormous potential for enhancing GLAST science on AGNs:
 - apparent jet speeds and Doppler factors
 - sizes of emission regions
 - ejection dates of moving features
- Challenges for large VLBA surveys:
 - establishing optimal sampling rate for each jet
 - achieving necessary temporal coverage
 - coordinating with multiwavelength observations
- MOJAVE aims to provide useful service to community during GLAST mission

www.physics.purdue.edu/MOJAVE